Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 14961, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294757

ABSTRACT

Influenza and other respiratory viruses present a significant threat to public health, national security, and the world economy, and can lead to the emergence of global pandemics such as from COVID-19. A barrier to the development of effective therapeutics is the absence of a robust and predictive preclinical model, with most studies relying on a combination of in vitro screening with immortalized cell lines and low-throughput animal models. Here, we integrate human primary airway epithelial cells into a custom-engineered 96-device platform (PREDICT96-ALI) in which tissues are cultured in an array of microchannel-based culture chambers at an air-liquid interface, in a configuration compatible with high resolution in-situ imaging and real-time sensing. We apply this platform to influenza A virus and coronavirus infections, evaluating viral infection kinetics and antiviral agent dosing across multiple strains and donor populations of human primary cells. Human coronaviruses HCoV-NL63 and SARS-CoV-2 enter host cells via ACE2 and utilize the protease TMPRSS2 for spike protein priming, and we confirm their expression, demonstrate infection across a range of multiplicities of infection, and evaluate the efficacy of camostat mesylate, a known inhibitor of HCoV-NL63 infection. This new capability can be used to address a major gap in the rapid assessment of therapeutic efficacy of small molecules and antiviral agents against influenza and other respiratory viruses including coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/virology , Influenza, Human/virology , Microbial Sensitivity Tests/instrumentation , Microfluidic Analytical Techniques/instrumentation , Respiratory Mucosa/cytology , Bronchi/cytology , Bronchi/virology , COVID-19/virology , Cell Culture Techniques/instrumentation , Cell Line , Coronavirus/drug effects , Coronavirus Infections/drug therapy , Equipment Design , High-Throughput Screening Assays/instrumentation , Humans , Influenza A virus/drug effects , Influenza, Human/drug therapy , Respiratory Mucosa/virology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
2.
Lab Chip ; 21(8): 1454-1474, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33881130

ABSTRACT

Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro, therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening.


Subject(s)
Drug Development , Lab-On-A-Chip Devices , Humans , Liver , Perfusion , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...